353 research outputs found

    Probing the Environment with Galaxy Dynamics

    Get PDF
    I present various projects to study the halo dynamics of elliptical galaxies. This allows one to study the outer mass and orbital distributions of ellipticals in different environments, and the inner distributions of groups and clusters themselves.Comment: 5 pages, 2 figs, to appear in Proc. ESO Workshop, Groups of Galaxies in the Nearby Universe (5-9 Dec 2005), eds. I. Saviane, V. Ivanov & J. Borissova (Springer-Verlag

    Ephemeral aggregate layers in the water column leave lasting footprints in the carbon cycle

    Get PDF
    Marine aggregates play a critical role in the biological pump, both as a dominant component of carbon flux and as hotspots for organic matter remineralization by microbial communities. In this study, we used laboratory experiments to investigate how aggregate thin layers, such as those commonly found in the coastal ocean, affect the distribution of bacteria and their activity. Diatom aggregates were added to a stratified water column, forming layers within which both microbial concentration and extracellular enzyme activity were substantially increased relative to background levels. Importantly, this enhancement of bacterial concentration and activity persisted long after the marine snow aggregates settled through the tank—that is, 10 times longer than the duration of the aggregate layer at the density interface. Thus, these small-scale microbial interactions within aggregate layers leave behind considerable “carbon processing footprints” in the water column that may affect biogeochemical cycles at much larger temporal and spatial scales

    A scheme with two large extra dimensions confronted with neutrino physics

    Full text link
    We investigate a particle physics model in a six-dimensional spacetime, where two extra dimensions form a torus. Particles with Standard Model charges are confined by interactions with a scalar field to four four-dimensional branes, two vortices accommodating ordinary type fermions and two antivortices accommodating mirror fermions. We investigate the phenomenological implications of this multibrane structure by confronting the model with neutrino physics data.Comment: LATEX, 24 pages, 9 figures, minor changes in the tex

    Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity

    Full text link
    In various astrophysical contexts, we analyze self-similar behaviours of magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized gas under self-gravity with the specific entropy conserved along streamlines. In particular, this MHD model analysis frees the scaling parameter nn in the conventional polytropic self-similar transformation from the constraint of n+Îł=2n+\gamma=2 with Îł\gamma being the polytropic index and therefore substantially generalizes earlier analysis results on polytropic gas dynamics that has a constant specific entropy everywhere in space at all time. On the basis of the self-similar nonlinear MHD ordinary differential equations, we examine behaviours of the magnetosonic critical curves, the MHD shock conditions, and various asymptotic solutions. We then construct global semi-complete self-similar MHD solutions using a combination of analytical and numerical means and indicate plausible astrophysical applications of these magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS

    Resonances in the dynamics of Ď•4\phi^4 kinks perturbed by ac forces

    Get PDF
    We study the dynamics of Ď•4\phi^4 kinks perturbed by an ac force, both with and without damping. We address this issue by using a collective coordinate theory, which allows us to reduce the problem to the dynamics of the kink center and width. We carry out a careful analysis of the corresponding ordinary differential equations, of Mathieu type in the undamped case, finding and characterizing the resonant frequencies and the regions of existence of resonant solutions. We verify the accuracy of our predictions by numerical simulation of the full partial differential equation, showing that the collective coordinate prediction is very accurate. Numerical simulations for the damped case establish that the strongest resonance is the one at half the frequency of the internal mode of the kink. In the conclusion we discuss on the possible relevance of our results for other systems, especially the sine-Gordon equation. We also obtain additional results regarding the equivalence between different collective coordinate methods applied to this problem.Comment: 23 pages, 7 figures, REVTeX, accepted for publication in Phys. Rev.

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Imaging Observations of Quasi-Periodic Pulsatory Non-Thermal Emission in Ribbon Solar Flares

    Full text link
    Using RHESSI and some auxiliary observations we examine possible connections between spatial and temporal morphology of the sources of non-thermal hard X-ray (HXR) emission which revealed minute quasi-periodic pulsations (QPPs) during the two-ribbon flares on 2003 May 29 and 2005 January 19. Microwave emission also reveals the same quasi-periodicity. The sources of non-thermal HXR emission are situated mainly inside the footpoints of the flare arcade loops observed by the TRACE and SOHO instruments. At least one of the sources moves systematically both during the QPP-phase and after it in each flare that allows to examine the sources velocities and the energy release rate via the process of magnetic reconnection. The sources move predominantly parallel to the magnetic inversion line or the appropriate flare ribbon during the QPP-phase whereas the movement slightly changes to more perpendicular regime after the QPPs. Each QPP is emitted from its own position. It is also seen that the velocity and the energy release rate don't correlate well with the flux of the HXR emission calculated from the sources. The sources of microwaves and thermal HXRs are situated near the apex of the loop arcade and are not stationary either. Almost all QPPs and some spikes of HXR emission during the post-QPP-phase reveal the soft-hard-soft spectral behavior indicating separate acts of electrons acceleration and injection, rather than modulation of emission flux by some kinds of magnetohydrodynamic (MHD) oscillations of coronal loops. In all likelihood, the flare scenarios based on the successively firing arcade loops are more preferable to interpret the observations, although we can not conclude exactly what mechanism forces these loops to flare up.Comment: 22 pages, 10 figure
    • …
    corecore